24 research outputs found

    Wikipedia as an encyclopaedia of life

    Get PDF
    In his 2003 essay E O Wilson outlined his vision for an “encyclopaedia of life” comprising “an electronic page for each species of organism on Earth”, each page containing “the scientific name of the species, a pictorial or genomic presentation of the primary type specimen on which its name is based, and a summary of its diagnostic traits.” Although the “quiet revolution” in biodiversity informatics has generated numerous online resources, including some directly inspired by Wilson's essay (e.g., "http://ispecies.org":http://ispecies.org, "http://www.eol.org":http://www.eol.org), we are still some way from the goal of having available online all relevant information about a species, such as its taxonomy, evolutionary history, genomics, morphology, ecology, and behaviour. While the biodiversity community has been developing a plethora of databases, some with overlapping goals and duplicated content, Wikipedia has been slowly growing to the point where it now has over 100,000 pages on biological taxa. My goal in this essay is to explore the idea that, largely independent of the efforts of biodiversity informatics and well-funded international efforts, Wikipedia ("http://en.wikipedia.org/wiki/Main_Page":http://en.wikipedia.org/wiki/Main_Page) has emerged as potentially the best platform for fulfilling E O Wilson’s vision

    Extracting scientific articles from a large digital archive: BioStor and the Biodiversity Heritage Library

    Get PDF
    Background: The Biodiversity Heritage Library (BHL) is a large digital archive of legacy biological literature, comprising over 31 million pages scanned from books, monographs, and journals. During the digitisation process basic metadata about the scanned items is recorded, but not article-level metadata. Given that the article is the standard unit of citation, this makes it difficult to locate cited literature in BHL. Adding the ability to easily find articles in BHL would greatly enhance the value of the archive. Description: A service was developed to locate articles in BHL based on matching article metadata to BHL metadata using approximate string matching, regular expressions, and string alignment. This article locating service is exposed as a standard OpenURL resolver on the BioStor web site http://biostor.org/openurl/. This resolver can be used on the web, or called by bibliographic tools that support OpenURL. Conclusions: BioStor provides tools for extracting, annotating, and visualising articles from the Biodiversity Heritage Library. BioStor is available from http://biostor.org

    Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations

    Get PDF
    Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 192 (2006): 449-459, doi:10.1007/s00359-005-0085-2.Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1-20 kHz band ranged from 131-168 dB re 1μPa @1m, with differences in the means of different sound classes (whistles: 140.2 ± 4.1 dB; variable calls: 146.6 ± 6.6 dB; stereotyped calls: 152.6 ± 5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16km in sea state zero) and “short-range” sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.Funding was provided by WHOI’s Ocean Ventures Fund and Rinehart Coastal Research Center and a Royal Society fellowship

    Spatial and Seasonal Distribution of American Whaling and Whales in the Age of Sail

    Get PDF
    American whalemen sailed out of ports on the east coast of the United States and in California from the 18th to early 20th centuries, searching for whales throughout the world’s oceans. From an initial focus on sperm whales (Physeter macrocephalus) and right whales (Eubalaena spp.), the array of targeted whales expanded to include bowhead whales (Balaena mysticetus), humpback whales (Megaptera novaeangliae), and gray whales (Eschrichtius robustus). Extensive records of American whaling in the form of daily entries in whaling voyage logbooks contain a great deal of information about where and when the whalemen found whales. We plotted daily locations where the several species of whales were observed, both those caught and those sighted but not caught, on world maps to illustrate the spatial and temporal distribution of both American whaling activity and the whales. The patterns shown on the maps provide the basis for various inferences concerning the historical distribution of the target whales prior to and during this episode of global whaling

    Characteristics of the Transmission System

    No full text

    Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaearensis)

    Get PDF
    For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action

    Clicking in Shallow Rivers : Short-Range Echolocation of Irrawaddy and Ganges River Dolphins in a Shallow, Acoustically Complex Habitat

    Get PDF
    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.Publisher PDFPeer reviewe
    corecore